

Formula for Sizing Chemical Feed Pump

Well Pump		Required		Time		Solution		Required	
FLOW RATE	X	DOSAGE	X	1440	÷	STRENGTH	=	FEED RATE	
(gpm)		(ppm)		(min/d	ay)	(ppm)		(gpd)	

A. Well Pump Flow Rate (gpm)

Turn well pump off, drain bladder tank, place 5 gallon bucket under spigot (coming of bladder tank), open spigot, turn well pump back on, time how long it takes to fill 5 gallon bucket

Example:

5 gallons in 2 minutes = 2.5 gpm

5 gallons in 1 minute = 5 gpm

5 gallons in 30 seconds = 10 gpm

B. Dosages (ppm)

	Favorable pH Range	Chlorine as Cl ₂	Contact Time Required
Iron (Fe)	6.5 - 7.5	1.0 ppm	20 minutes
Manganese (Mn)	8.0 - 9.5	2.0 ppm	20 minutes
Hyd. Sulfide (H ₂ S)	8.5 - 10	3.0 ppm	30 minutes

Example:

- 1. For every 1 ppm of Iron, 1 ppm of chlorine is required for dosage
- 2. If water report consist of 2.0 ppm iron & 1 ppm of manganese; required dosage would be 3.0 ppm of chlorine Note: Always round up, i.e., 0.3 ppm iron = 1 ppm chlorine

C. <u>Time (minutes/day)</u>

1440 minutes per day

D. Solution Strength

 Bleach 5.25%
 52,500 ppm

 Bleach 12.5%
 125,000 ppm

 Hydrogen Peroxide 35%
 350,000 ppm

Chemical Feed Pump Sizing Example

If pump produces 5 gpm, contains 3 ppm of iron and were using regular 5.25% chlorine bleach

Well Pump Required Time Solution Required 5 FLOW RATE X 3 DOSAGE X 1440 \div 52500 STRENGTH = 0.41 FEED RATE (gpm) (min/day) (ppm) (gpd)

We offer 2 different size pumps, 3 gallons per day and 10 gallons per day. When sizing the pump, the pump should be set 50-70% of its maximum output to maximize efficiency and not overrun pump. The 3 gpd pump would be set to inject 1-1.5 gpd; the 10 gpd would be set to inject at 3-5 gpd.

In the example above, our "required feed rate" is 0.41 gpd. This feed rate is closer to 1-1.5 gpd for 3 gpd pump vs. the 3-5 gpd of 10gpd pump. Therefore we would choose the 3 gpd pump based on this calculation.

However, as indicated we need to run between 1-1.5 gpd to maximize efficiency and were only at 0.41 gpd, therefore we will dilute this solution to achieve our 1-1.5 gpd feed requirement.

Take 1.5 gpd (half our pump curve) ÷ 0.41 gpd (Feed Rate) = 3.65 Dilution Rate

We would dilute roughly 3.5 gallons of water to 1 gallon of bleach

1.5 gallons per day would be used if pump was running 24 hours per day; in a normal household the pump may only run a maximum total of 3 hours per day.

Example:

1.5 gallons per day ÷ 24 hours per day = 0.06 gallons per hour

0.06 gallons per hour x 3 hours per day (pump usage) = 0.18 gallons of solution used per day

0.18 gallons per day x 30 days = 5.6 gallons per month

15 gallons solution tank ÷ 5.6 gallons per month = 2.6 months of solution